Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide.
نویسندگان
چکیده
Electrochemical applications of graphene are of very high importance. For electrochemistry, bulk quantities of materials are needed. The most common preparation of bulk quantities of graphene materials is based on oxidation of graphite to graphite oxide and subsequent thermal exfoliation of graphite oxide to thermally reduced graphene oxide (TR-GO). It is important to investigate to which extent a reaction condition, that is, composition of the oxidation mixture and size of graphite materials, influences the properties of the resulting materials. We characterised six graphite materials with a range of particle sizes (0.05, 11, 20, 32, 35 and 41 μm) and the TR-GO products prepared from them by use of scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Cyclic voltammetric performance of the TR-GO samples was compared using ferro/ferricyanide and ascorbic acid. We observed no correlation between size of initial graphite and properties of the resultant TR-GO such as density of surface defects, amount of oxygen-containing groups, or rate of heterogeneous electron transfer (HET). A positive correspondence between HET rate and high defect density as well as low amounts of oxygen functionalities was noted. Our findings will have profound influence upon practical fabrication of graphene for applications in sensing and energy storage devices.
منابع مشابه
Gas Separation Properties of Mixed Matrix Membranes based on Polyimide and Graphite Oxide
In this work, three different graphene-based materials, namely graphite oxide (GrO), thermally reduced graphite oxide (T-RGrO) and ascorbic acid multi-phase reduced graphene oxide (AMP-RGO), were synthesized and used to produce mixed matrix membranes (MMM) based on Matrimid®5218 for as separation. From the samples produced, a complete set of characterization was performed including XRD, FTIR, T...
متن کاملIn-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملHydrophobicity Properties of Graphite and Reduced Graphene Oxide of The Polysulfone (PSf) Mixed Matrix Membrane
Hydrophobicity properties of graphite and green synthesized graphene (gsG) from exfoliated graphite/GO towards polymer membrane characteristic and properties at different weight percentage concentrations (1, 2, 3, 4 and 5 wt. %) were investigated. PSf/graphite and PSf/gsG membranes were characterized in term of hydrophobicity, surface bonding, surface roughness and porosity. FTIR peaks revealed...
متن کاملThermally reduced graphenes exhibiting a close relationship to amorphous carbon.
Graphene is an important material for sensing and energy storage applications. Since the vast majority of sensing and energy storage chemical and electrochemical systems require bulk quantities of graphene, thermally reduced graphene oxide (TRGO) is commonly employed instead of pristine graphene. The sp(2) planar structure of TRGO is heavily damaged, consisting of a very short sp(2) crystallite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 37 شماره
صفحات -
تاریخ انتشار 2012